3DPrinting.com reports that Stanford researchers have successfully enabled low energy resin printing through the use of photonic upconversion.


At Stanford University’s Congreve Lab, scientists Tracy H. Schloemer and Daniel N. Congreve are delving into the realm of light manipulation, specifically focusing on the practical applications of altering light’s color. Their groundbreaking research has a wide range of implications, spanning from advancements in 3D printing to more efficient solar energy utilization. This innovative research stems from a process called upconversion, which has the ability to convert low-energy photons into higher-energy ones. While the phenomenon of upconversion has been studied for several decades, recent improvements in materials and techniques have made it a more viable and practical solution.

Schloemer and Congreve employ a groundbreaking technique known as triplet-triplet annihilation. By using readily available materials and low-power lasers, they have achieved significant breakthroughs in their research. This research also involves a novel application of 3D printing, where the color of light is manipulated to enhance the precision and efficiency of additive manufacturing. Traditionally, 3D printing resin is cured using blue or UV photons. However, Schloemer and Congreve have pioneered a new approach by using a red laser beam instead. The key to their 3D printing technique lies in the phenomenon of upconversion, which occurs at specific light intensities. By focusing the red laser beam on a particular point within the resin pool, they can increase its intensity, triggering upconversion and generating a small dot of blue light at the focal point. This blue light then cures the resin, enabling the creation of intricate 3D objects within the resin pool. Remarkably, this entire process can be accomplished using a low-power laser, similar to a regular laser pointer.

Another noteworthy application of their work involves enhancing the efficiency of solar cells. Currently, single-junction solar cells can only harness a fraction of the available sunlight due to a mismatch between the incident light colors and the energy bandgap of the cells. By upconverting low-energy photons into higher-energy ones, Schloemer and Congreve hope to maximize solar cell performance.

This new method of 3D printing not only offers the potential for rapid and precise nanoscale printing but also eliminates the issue of resin degradation caused by high-powered lasers. It opens up a world of possibilities for advanced 3D printing applications, revolutionizing industries such as healthcare, aerospace, and electronics.

Do you find this research fascinating? We would love to hear your thoughts and insights on our Facebook, Twitter, and LinkedIn pages. Don’t forget to sign up for our weekly additive manufacturing newsletter to stay updated on the latest stories delivered conveniently to your inbox.

Original source


“Why did the 3D printer go to therapy? Because it had too many layers of unresolved issues!”

Like it? Share with your friends!


Meet the mastermind behind NozzleNerds.com: GCode-Guru, a 3D printing wizard whose filament collection rivals their sock drawer. Here to demystify 3D tech with a mix of expert advice, epic fails, and espresso-fueled rants. If you've ever wondered how to print your way out of a paper bag (or into a new coffee cup), you're in the right place. Dive into the world of 3D printing with us—where the only thing more abundant than our prints is our sarcasm.


Your email address will not be published. Required fields are marked *

Choose A Format
Personality quiz
Series of questions that intends to reveal something about the personality
Trivia quiz
Series of questions with right and wrong answers that intends to check knowledge
Voting to make decisions or determine opinions
Formatted Text with Embeds and Visuals
The Classic Internet Listicles
The Classic Internet Countdowns
Open List
Submit your own item and vote up for the best submission
Ranked List
Upvote or downvote to decide the best list item
Upload your own images to make custom memes
Youtube and Vimeo Embeds
Soundcloud or Mixcloud Embeds
Photo or GIF
GIF format